ઘડિયાળનો મિનિટકાંટો $1.5$ સેમી લાંબો છે, તો $40$ મિનિટમાં કાંટાએ કાપેલ અંતર શોધો.  (  $\pi=3.14$ લો. )

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $60$ minutes, the minute hand of a watch completes one revolution. Therefore, in $40$ minutes, the minute hand turns through $\frac{2}{3}$ of a revolution. Therefore, ${\theta  = 23 \times {{360}^\circ }}$ or $\frac{4 \pi}{3}$ radian. Hence, the required distance travelled is given by

$l=r \theta=1.5 \times \frac{4 \pi}{3} \,cm =2 \pi \,cm =2 \times 3.14 \,cm =6.28 \,cm$

Similar Questions

આપેલ પૈકી ક્યો સંબધ શક્ય છે ?

રેડિયન માપ શોધો : $240^{\circ}$

 $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}  =$

જો $x$ ત્રીજા ચરણમાં હોય અને $\cos x=-\frac{3}{5},$ તો બાકીનાં પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો. 

જો $x$ ની વાસ્તવિક કિમત માટે  $\cos \theta = x + \frac{1}{x},$ તો  . . ..