જો $\tan \theta + \sin \theta = m$ અને $\tan \theta - \sin \theta = n,$ તો
${m^2} - {n^2} = 4\,mn$
${m^2} + {n^2} = 4\,mn$
${m^2} - {n^2} = {m^2} + {n^2}$
${m^2} - {n^2} = 4\sqrt {mn} $
જો $sin\theta_1 + sin\theta_2 + sin\theta_3 = 3,$ થાય તો $cos\theta_1 + cos\theta_2 + cos\theta_3=$
જો $\sin \theta = \frac{{24}}{{25}}$ અને $\theta $ એ દ્રીતીય ચરણ માં હોય તો $\sec \theta + \tan \theta = $
સાબિત કરો કે : $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$
જો $\theta $ અને $\phi $ એ પ્રથમ ચરણમાં આવેલ છે કે જેથી $\tan \theta = 1/7$ અને $\sin \phi = 1/\sqrt {10} $.તો
જો ${\tan ^2}\alpha {\tan ^2}\beta + {\tan ^2}\beta {\tan ^2}\gamma + {\tan ^2}\gamma {\tan ^2}\alpha $ $ + 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma = 1,$ તો ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma =.........$