The minute hand of a watch is $1.5 \,cm$ long. How far does its tip move in $40$ minutes? ( Use $\pi=3.14$ ).

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $60$ minutes, the minute hand of a watch completes one revolution. Therefore, in $40$ minutes, the minute hand turns through $\frac{2}{3}$ of a revolution. Therefore, ${\theta  = 23 \times {{360}^\circ }}$ or $\frac{4 \pi}{3}$ radian. Hence, the required distance travelled is given by

$l=r \theta=1.5 \times \frac{4 \pi}{3} \,cm =2 \pi \,cm =2 \times 3.14 \,cm =6.28 \,cm$

Similar Questions

Let the function $:(0, \pi) \rightarrow R$ be defined by

$f (\theta)=(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^4$

Suppose the function $f$ has a local minimum at $\theta$ precisely when $\theta \in\left\{\lambda_1 \pi, \ldots, \lambda_{ T } \pi\right\}$, where $0<\lambda_1<\cdots<\lambda_r<1$. Then the value of $\lambda_1+\cdots+\lambda_r$ is. . . . . 

  • [IIT 2020]

Prove that:   

$\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$

The product $\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 3^{\circ}\right)$ $. .\left(1+\tan 45^{\circ}\right)$ equals

  • [KVPY 2010]

Prove that:

 $ 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$

Find the radian measures corresponding to the following degree measures:

$240^{\circ}$