$7$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं यदि एक प्रेक्षण $14$ को हटाने पर शेष $6$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $a$ तथा $b$ है, तो $a+3 b-5$ बराबर है____________. 

  • [JEE MAIN 2023]
  • A

    $36$

  • B

    $35$

  • C

    $34$

  • D

    $37$

Similar Questions

माना $12$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{9}{2}$ तथा $4$ हैं। बाद में यह पाया गया कि दो प्रेक्षणों $7$ तथा $14$ के स्थान पर क्रमशः $9$ तथा $10$ ले लिए गए थे। यदि सही प्रसरण $\frac{\mathrm{m}}{\mathrm{n}}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ सहअभाज्य हैं, तो $\mathrm{m}+\mathrm{n}$ बराबर है

  • [JEE MAIN 2023]

माना $X=\{x \in N : 1 \leq x \leq 17\}$ और $Y=\{a x+b: x \in X$ और $a, b \in R , a>0\}$ यदि $Y$ के अवयव का माध्य और प्रसरण क्रमश $17$ और $216$ है तो $a+b$ बराबर है

  • [JEE MAIN 2020]

$15$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $12$ तथा 3 प्राप्त किए गए। पुनः जाँच पर यह पाया गया कि एक प्रेक्षण को $12$ की जगह $10$ पढ़ा गया था। यदि सही प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\mu$ तथा $\sigma^2$ है, तो $15\left(\mu+\mu^2+\sigma^2\right)$ बराबर है ................|

  • [JEE MAIN 2024]

मान लें कि $n \geq 3$ है। $n$ संख्याओं की एक सूची $0 < x_1 < x_2 < \cdots < x_n$ का औसत $\mu$ तथा नियत विचलन $(standard\,deviation)$ $\sigma$ है। एक नई सूची $y_1=0$, $y_2=x_2, \ldots, y_{n-1}=x_{n-1}, y_n=x_1+x_n$ बनाई जाती है जिसका औसत $\hat{\mu}$ तथा नियत विचलन $\hat{\sigma}$ है। तब निम्नलिखित में से कौन सा कथन सत्य है?

  • [KVPY 2013]

यदि संख्याओं $-1,0,1, k$ का मानक विचलन $\sqrt{5}$ है, जहाँ $k > 0$ है, तो $k$ बराबर है

  • [JEE MAIN 2019]