$7$ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $8$ અને $16$ છે.જો એેક અવલોકન $14$ ને રદ કરવામાં આવે અને બાકીના $6$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $a$ અને b હોય.તો $a+3b-5=............$.

  • [JEE MAIN 2023]
  • A

    $36$

  • B

    $35$

  • C

    $34$

  • D

    $37$

Similar Questions

$10$ અવલોકનનો  મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $2$ છે . જો દરેક અવલોકનોને $\mathrm{p}$ વડે ગુણીને $\mathrm{q}$ બાદ કરવામાં આવે છે કે જ્યાં $\mathrm{p} \neq 0$ અને $\mathrm{q} \neq 0 $. જો નવો મધ્યક અને વિચરણ એ જૂના મધ્યક અને વિચરણ કરતાં અડધું હોય તો $q$ મેળવો.

  • [JEE MAIN 2020]

$15$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્મે $12$ અને $3$ ભણવામાં આવ્યા છે. ફેરચકાસણી કરતા એવું માલુમ થાય છે કે એક અવલોકન $12$ ની જગ્યાએ $10$ વાંચવામાં આવ્યું હતું. જો સાચાં અવલોક્નોના મધ્યક અને વિચરણ અનુક્રમે $\mu$ અને $\sigma^2$ વડે દર્શાવાય, તો $15\left(\mu+\mu^2+\sigma^2\right)=$.........................

  • [JEE MAIN 2024]

વિધાન $- 1 : $ પ્રથમ $n$  યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{4}$છે.

વિધાન $ - 2$  : પ્રથમ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $\frac{{n(n\,\, + \,\,1)}}{2}$અને પ્રથમ $n$  પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(n\, + \,\,1)\,(2n\, + \,\,1)}}{6}$ છે.

અહી $x _1, x _2, \ldots \ldots x _{10}$ દસ અવલોકન આપેલ છે કે જેથી $\sum_{i=1}^{10}\left(x_i-2\right)=30, \sum_{i=1}^{10}\left(x_i-\beta\right)^2=98, \beta>2$ અને તેઓના વિચરણ $\frac{4}{5}$ થાય. જો $\mu$ અને $\sigma^2$ એ અનુક્રમે  $2\left( x _1-1\right)+4 \beta, 2\left( x _2-1\right)+$ $4 \beta, \ldots . ., 2\left(x_{10}-1\right)+4 \beta$ ના મધ્યક અને વિચરણ હોય તો $\frac{\beta \mu}{\sigma^2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

જો વિતરણના દરેક પદને $2 $ જેટલું વધારવામાં આવે તો વિતરણનો મધ્‍ધ્યસ્થ અને પ્રમાણિત વિચલન કેટલું થશે ?