$20$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $10$ तथा $4$ पाये गये। पुनः जाँच करने पर पाया गया कि एक प्रेक्षण $9$ गलत था सही प्रेक्षण $11$ था। तो सही प्रसरण है
$3.99$
$3.98$
$4.02$
$4.01$
निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
माना $100$ छात्रों की कक्षा $\mathrm{A}$ के छात्रों के अंको के माध्य तथा मानक विचलन क्रमशः $40$ तथा $\alpha(>0)$ है तथा $\mathrm{n}$ छात्रों की कक्षा $\mathrm{B}$ के छात्रों के अंकों के माध्य तथा मानक विचलन क्रमशः $55$ तथा $30-\alpha$ है। यदि संयुक्त कक्षा के $100+\mathrm{n}$ छात्रों के अंकों मे माध्य तथा प्रसरण क्रमशः $50$ तथा $350$ हैं, तो कक्षाओं $\mathrm{A}$ तथा $\mathrm{B}$ के प्रसरणों का योग है :
$200$ उम्मीदवारों के अंकों का माध्य तथा मानक विचलन क्रमश: $40$ तथा $15$ है। बाद में, यह पाया गया कि किसी संख्या $40$ को गलती से $50$ पढ़ा गया है। सही माध्य तथा मानक विचलन क्रमश: हैं
सात प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ है। यदि इनमें से $5$ प्रेक्षण $2,4,10,12,14$ है, तो शेष दो प्रेक्षणों का गुणनफल है