$20$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $10$ અને $4$ છે. પછીથી માલૂમ પડ્યું કે અવલોકન $9$ એ ખોટું છે અને સાચું અવલોકન $11$ હોય તો સાચું વિચરણ મેળવો.
$3.99$
$3.98$
$4.02$
$4.01$
$a, a + d, a + 2d, ……, a + 2nd$ શ્રેણીનું વિચરણ શોધો.
જ્યારે $10$ અવલોકન લખવામાં આવે ત્યારે એક વિધ્યાર્થી $25$ ની બદલે $52$ લખી નાખે છે અને તેને મધ્યક અને વિચરણ અનુક્રમે $45$ અને $16$ મળે છે તો સાચો મધ્યક અને વિચરણ મેળવો
જો આવૃત્તિ વિતરણ
$X_i$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ |
Frequency $f_i$ | $3$ | $6$ | $16$ | $\alpha$ | $9$ | $5$ | $6$ |
નું વિચરણ $3$ હોય, તો $\alpha=..............$
$x$ ના $15$ અવલોકનોના પ્રયોગમાં $\sum x^2 = 2830,\, \sum x = 170 $આ પરિણામ મળે છે. એક અવલોકન $20$ ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$ મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?
ધારો કે $X=\{11,12,13, \ldots, 40,41\}$ અને $Y=\{61,62,63, \ldots, 90,91\}$ એ અવલોકનોના બે ગણ છે. જો $\bar{x}$ અને $\bar{y}$ અનુક્રમે તેમના મધ્યક હોય તથા $X \cup Y$ માં ના તમામ અવલોકનો નું વિચરણ $\sigma^2$ હોય, તો $\left|\bar{x}+\bar{y}-\sigma^2\right|=...............$