$200$ उम्मीदवारों के अंकों का माध्य तथा मानक विचलन क्रमश: $40$ तथा $15$ है। बाद में, यह पाया गया कि किसी संख्या $40$ को गलती से $50$ पढ़ा गया है। सही माध्य तथा मानक विचलन क्रमश: हैं
$14.98, 39.95$
$39.95, 14.98$
$39.95, 224.5$
ईनमे से कोई नहीं
$15$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $12$ तथा 3 प्राप्त किए गए। पुनः जाँच पर यह पाया गया कि एक प्रेक्षण को $12$ की जगह $10$ पढ़ा गया था। यदि सही प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\mu$ तथा $\sigma^2$ है, तो $15\left(\mu+\mu^2+\sigma^2\right)$ बराबर है ................|
माना बंटन
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है
माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है
पहली $50$ सम प्राकृत संख्याओं का प्रसरण है:
माना $n$ प्रेक्षणों $x_{1}, x_{2}, \ldots, x_{ n }$ के माध्य बहुलक तथा प्रसरण क्रमश: $\bar{x}, M$ तथा $\sigma^{2}$ तथा $d _{ i }=-x_{ i }- a$, $i=1,2, \ldots, n$ हैं, जहाँ $a$ कोई संख्या हैं।
कथन $I$ : $d _{1}, d _{2}, \ldots, d _{ n }$ का प्रसरण $\sigma^{2}$ हैं
कथन $II$ : $d _{1}, d _{2}, \ldots, d _{ n }$ के माध्य तथा बहुलक क्रमाश: $-\bar{x}- a$ तथा $- M - a$ है