$200$ उम्मीदवारों के अंकों का माध्य तथा मानक विचलन क्रमश: $40$ तथा $15$ है। बाद में, यह पाया गया कि किसी संख्या $40$ को गलती से $50$ पढ़ा गया है। सही माध्य तथा मानक विचलन क्रमश: हैं
$14.98, 39.95$
$39.95, 14.98$
$39.95, 224.5$
ईनमे से कोई नहीं
तीन प्रेक्षणों $a , b$ तथा $c$ का विचार कीजिए, जिनके लिए $b = a + c$ है। यदि $a +2, b +2, c +2$ का मानक विचलन $d$ है, तो निम्न में से कौन सा सत्य है ?
यदि पाँच प्रे क्षणों $x _{1}, x _{2}, x _{3}, x _{4}, x _{5}$ का माध्य तथा मानक विचलन क्रमशः $10$ तथा $3$ हो, तो छः प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{5}$ तथा $-50$ का प्रसरण होगा-
यदि प्रेक्षणों ${x_1},\,{x_2},\,......{x_n}$ का प्रसरण ${\sigma ^2}$ है, तब $a{x_1},\,a{x_2},.......,\,{\rm{ }}a{x_n}$, $a \ne 0$ का प्रसरण है
निम्नलिखित आँकड़ों के लिए प्रसरण तथा मानक विचलन ज्ञात कीजिए
$6,8,10,12,14,16,18,20,22,24$
$(2n +1)$ प्रेक्षणों ${x_1},\, - {x_1},\,{x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ तथा $0$ (शून्य) के लिये (जहाँ $x$ के सभी मान भिन्न है)। माना $S.D$ तथा $M.D.$ क्रमश: मानक विचलन तथा माध्यिका प्रदर्शित करते हैं, तब निम्न में से कौनसा सदैव सत्य है