અમુક માહિતી માટે મધ્યક અને પ્રમાણિત વિચલન આપેલ છે જે નીચે મુજબ છે

અવલોકનની સંખ્યા $=25,$ મધ્યક $=18.2$ અને પ્રમાણિત વિચલન $=3.25$

વધારામાં બીજા 15 અવલોકનો $x_{1}, x_{2}, \ldots, x_{15},$ ગણ પણ હાજર છે જેના માટે $\sum_{i=1}^{15} x_{i}=279$ અને $\sum_{i=1}^{15} x_{i}^{2}=5524$ છે તો બધા 40 અવલોકનનો પ્રમાણિત વિચલન મેળવો 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given, $n_{1}=25, \bar{x}_{i}=18.2, \sigma_{1}=3.25$

$n_{2}=15, \sum_{i=1}^{15} x_{i}=279$ and $\sum_{i=1}^{15} x_{i}^{2}=5524$

For first set $\Sigma x_{i}=25 \times 18.2=455$

$\therefore$

$\sigma_{1}^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2}$

$\Rightarrow \quad(3.25)^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2} \Rightarrow 10.5625+331.24=\frac{\Sigma x_{i}^{2}}{25}$

$\Rightarrow \quad \Sigma x_{i}^{2}=25 \times(10.5625+331.24)=25 \times 341.8025=8545.0625$

For combined SD of the 40 observations, $n=40$.

Now $\quad \sum_{i=1}^{40} x_{i}^{2}=5524+8545.0625=14069.0625$

and $\quad \sum_{i=1}^{40} x_{i}=455+279=734$

$\therefore \quad SD =\sqrt{\frac{14069.0625}{40}-\left(\frac{734}{40}\right)^{2}}=\sqrt{351.1726-(18.35)^{2}}$

$=\sqrt{351.726-336.7225}=\sqrt{15.0035}=3.87$

Similar Questions

આવૃતી વિતરણ

$\mathrm{x}$ $\mathrm{x}_{1}=2$ $\mathrm{x}_{2}=6$ $\mathrm{x}_{3}=8$ $\mathrm{x}_{4}=9$
$\mathrm{f}$ $4$ $4$ $\alpha$ $\beta$

માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.

  • [JEE MAIN 2021]

ધારો કે અવલોકનો  $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો  $\mu$ અને  $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.

  • [JEE MAIN 2020]

જો માહિતી $65,68,58,44,48,45,60, \alpha, \beta, 60$ જ્યાં $\alpha>\beta$ નો મધ્યક અને વિચરણ અનુક્રમે $56$ અને $66.2$ હોય, તો $\alpha^2+\beta^2=$.............................

  • [JEE MAIN 2024]

 જો સંભાવના વિતરણ

વર્ગ: $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
આવૃતિ $2$ $3$ $x$ $5$ $4$

નો મધ્યક $28$ હોય,તો તેનું વિચરણ $.........$ છે. 

  • [JEE MAIN 2023]

નીચે આપેલ માહિતી માટે મધયક અને વિચરણ મેળવો 

$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$