અમુક માહિતી માટે મધ્યક અને પ્રમાણિત વિચલન આપેલ છે જે નીચે મુજબ છે
અવલોકનની સંખ્યા $=25,$ મધ્યક $=18.2$ અને પ્રમાણિત વિચલન $=3.25$
વધારામાં બીજા 15 અવલોકનો $x_{1}, x_{2}, \ldots, x_{15},$ ગણ પણ હાજર છે જેના માટે $\sum_{i=1}^{15} x_{i}=279$ અને $\sum_{i=1}^{15} x_{i}^{2}=5524$ છે તો બધા 40 અવલોકનનો પ્રમાણિત વિચલન મેળવો
Given, $n_{1}=25, \bar{x}_{i}=18.2, \sigma_{1}=3.25$
$n_{2}=15, \sum_{i=1}^{15} x_{i}=279$ and $\sum_{i=1}^{15} x_{i}^{2}=5524$
For first set $\Sigma x_{i}=25 \times 18.2=455$
$\therefore$
$\sigma_{1}^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2}$
$\Rightarrow \quad(3.25)^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2} \Rightarrow 10.5625+331.24=\frac{\Sigma x_{i}^{2}}{25}$
$\Rightarrow \quad \Sigma x_{i}^{2}=25 \times(10.5625+331.24)=25 \times 341.8025=8545.0625$
For combined SD of the 40 observations, $n=40$.
Now $\quad \sum_{i=1}^{40} x_{i}^{2}=5524+8545.0625=14069.0625$
and $\quad \sum_{i=1}^{40} x_{i}=455+279=734$
$\therefore \quad SD =\sqrt{\frac{14069.0625}{40}-\left(\frac{734}{40}\right)^{2}}=\sqrt{351.1726-(18.35)^{2}}$
$=\sqrt{351.726-336.7225}=\sqrt{15.0035}=3.87$
ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક અને પ્રમાણિત વિચલન શોધો.
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |
નીચે આપેલ વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલનની ગણતરી કરો :
વર્ગ |
$30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ |
$0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
આવૃત્તિ |
$2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
જો વિતરણનું દરેક અવલોકન જેનું વિચરણ $\sigma^2$ એ $\lambda$ વડે ગુણીત હોય તો નવા અવલોકનોનું પ્રમાણિત વિચલન શોધો.
$6$ અવલોકનો $a$, $b,$ $68,$ $44,$ $48,$ $60$ ના મધ્યક અને વિચરણ અનુક્કમે $55$ અને $194$ છે. જો $a > b,$ તો $a +$ $3 b=$..........................