એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :

વિષય

ગણિત  ભૌતિકશાસ્ત્ર

રસાયણશાસ્ત્ર

મધ્યક  $42$ $32$ $40.9$
પ્રમાણિત વિચલન  $12$ $15$ $20$

કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Standard deviation of Mathematics $=12$

Standard deviation of Physics $=15$

Standard deviation of Chemistry $=20$

The coefficient of variation $( C.V. )$ is given by $\frac{\text { Standard deviation }}{\text { Mean }} \times 100$

$C.V.$ (in Mathematics) $=\frac{12}{42} \times 100=28.57$

$C.V.$ (in Physics) $=\frac{15}{32} \times 100=46.87$

$C.V.$ (in Chemistry) $=\frac{20}{40.9} \times 100=48.89$

The subject with greater $C.V.$ is more variable than others.

Therefore, the highest variability in marks is in Chemistry and the lowest variability in marks is in Mathematics.

Similar Questions

જો $n$  અવલોકનો $x_1, x_2, …… x_n$  નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $\bar x$અને $\sigma$ હોય તો અવલોકનોના વર્ગનો સરવાળો કેટલો થાય ?

વિધાન $- 1$  : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.

વિધાન $- 2$  : પ્રથમ $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$  છે અને પ્રથમ  $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.

$x $ ના $15$ અવલોકનોના પ્રયોગમાં $\Sigma$ $x^2 = 2830,$  $\Sigma$ $x = 170 $ આ પરિણામ મળે છે. એક અવલોકન $20$  ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$  મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?

$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$  ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$  બરાબર નીચેના પૈકી કયું હશે ?

જો $\sum_{i=1}^{5}(x_i-10)=5$ અને $\sum_{i=1}^{5}(x_i-10)^2=5$ હોય તો અવલોકનો $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ અને $2x_5 + 7$ નો પ્રમાણિત વિચલન મેળવો