એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :
વિષય |
ગણિત | ભૌતિકશાસ્ત્ર |
રસાયણશાસ્ત્ર |
મધ્યક | $42$ | $32$ | $40.9$ |
પ્રમાણિત વિચલન | $12$ | $15$ | $20$ |
કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ?
Standard deviation of Mathematics $=12$
Standard deviation of Physics $=15$
Standard deviation of Chemistry $=20$
The coefficient of variation $( C.V. )$ is given by $\frac{\text { Standard deviation }}{\text { Mean }} \times 100$
$C.V.$ (in Mathematics) $=\frac{12}{42} \times 100=28.57$
$C.V.$ (in Physics) $=\frac{15}{32} \times 100=46.87$
$C.V.$ (in Chemistry) $=\frac{20}{40.9} \times 100=48.89$
The subject with greater $C.V.$ is more variable than others.
Therefore, the highest variability in marks is in Chemistry and the lowest variability in marks is in Mathematics.
કોઇ અલગ શ્રેણીમાં (જ્યારે બધા જ મૂલ્યો સમાન ન હોય) સરેરાશ વિચલન, મધ્યક અને પ્રમાણિત વિચલન વચ્ચેનો સંબંધ શું થાય ?
$15$ સંખ્યાઓના એક ગણના મધ્યક અને વિચરણ અનુક્રમે $12$ અને $14$ છે.$15$ સંખ્યાઓના અન્ય એક ગણના મધ્યક અને વિચરણ અનુક્રમે $14$ અને $\sigma^2$ છે.બંને ગણની તમામ $30$ સંખ્યાઓનું વિયરણ જો $13$ હોય, તો $\sigma^2=........$
જો શ્રેણીમાં $2 n$ અવલોકન આપેલ છે જે પૈકી અડધા અવલોકનો $a$ અને બાકીના અવલોકનો $-a$ છે. અને જો અવલોકનોમાં અચળ $b$ ઉમેરવવામાં આવે તો માહિતીનો નવો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $5$ અને $20 $ થાય છે તો $a^{2}+b^{2}$ ની કિમંત મેળવો.
જો બે $20$ અવલોકનો ધરાવતા ગણો છે જેના પ્રમાણિત વિચલન સમાન અને $5$ છે તેમાંથી એક ગણનો મધ્યક $17$ અને બીજા ગણનો મધ્યક $22$ છે તો બંને ગણોના સમૂહનો પ્રમાણિત વિચલન મેળવો
અમુક માહિતી માટે મધ્યક અને પ્રમાણિત વિચલન આપેલ છે જે નીચે મુજબ છે
અવલોકનની સંખ્યા $=25,$ મધ્યક $=18.2$ અને પ્રમાણિત વિચલન $=3.25$
વધારામાં બીજા 15 અવલોકનો $x_{1}, x_{2}, \ldots, x_{15},$ ગણ પણ હાજર છે જેના માટે $\sum_{i=1}^{15} x_{i}=279$ અને $\sum_{i=1}^{15} x_{i}^{2}=5524$ છે તો બધા 40 અવલોકનનો પ્રમાણિત વિચલન મેળવો