વિધાન $- 1$ : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.
વિધાન $- 2$ : પ્રથમ $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$ છે અને પ્રથમ $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન $- 1 $ ની સાચી સમજૂતી છે.
વિધાન $- 1 $ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન $ - 1 $ ની સાચી સમજૂતી નથી.
વિધાન $- 1$ સાચું છે. વિધાન $ - 2$ ખોટું છે.
વિધાન $- 1 $ ખોટું છે. વિધાન $- 2$ સાચું છે.
જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.
જો આપેલ આવ્રુતિ વિતરણનો વિચરણ $50$ હોય તો $x$ ની કિમત મેળવો.
Class | $10-20$ | $20-30$ | $30-40$ |
Frequency | $2$ | $x$ | $2$ |
$31, 32, 33, ...... 47 $ સંખ્યાઓનું પ્રમાણિત વિચલન કેટલું થાય ?
$x$ ના $15$ અવલોકનોના પ્રયોગમાં $\sum x^2 = 2830,\, \sum x = 170 $આ પરિણામ મળે છે. એક અવલોકન $20$ ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$ મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?
ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.