$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$ ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$ બરાબર નીચેના પૈકી કયું હશે ?
$x_1$
$x_{51}$
$x_{50}$
$\frac{{{x_1}\, + \,\,{x_2}\, + \,\,......\,\, + \,\,{x_{101}}}}{{101}}$
બે માહિતીમાં $ 5 $ અવલોકનો આવેલ છે કે જેના વિચરણ $4$ અને $5$ છે અને તેમાંના મધ્યકો અનુક્રમે $2$ અને $4$ છે. તો બંને માહિતીને ભેગી કરતાં નવી માહિતીનો વિચરણ મેળવો. .
અહી $\mathrm{n}$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે કે જેથી $1,2,3,4, \ldots, \mathrm{n}$ નું વિચરણ $14 $ થાય છે તો $\mathrm{n}$ ની કિમંત મેળવો.
અવલોકનો $3,5,7,2\,k , 12,16,21,24$ ને ચડતા ક્રમમાં ગોઠવી ને મધ્યસ્થની સરેરાશ વિચલન $6$ હોય તો મધ્યસ્થ મેળવો.
સંખ્યાઓ $a, b, 8, 5, 10 $ નો મધ્યક $6$ અને વિચરણ $6.80 $ હોય તો નીચે આપેલ પૈકી કઇ એક $a $ અને $b $ માટે શક્ય કિંમત છે ?
$2n$ અવલોકનનો વાળી શ્રેણીમાં તે પૈકી અડધા અવલોકનો $a$ બરાબર અને બાકીના $-a $ છે. જો અવલોકનોનું પ્રમાણિત વિચલન $2$ હોય તો $| a | $ બરાબર શું થાય ?