$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$  ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$  બરાબર નીચેના પૈકી કયું હશે ?

  • A

    $x_1$

  • B

    $x_{51}$

  • C

    $x_{50}$

  • D

    $\frac{{{x_1}\, + \,\,{x_2}\, + \,\,......\,\, + \,\,{x_{101}}}}{{101}}$

Similar Questions

જો આવૃત્તિ વિતરણ 

$X_i$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
Frequency $f_i$ $3$ $6$ $16$ $\alpha$ $9$ $5$ $6$

નું વિચરણ $3$ હોય, તો $\alpha=..............$

  • [JEE MAIN 2023]

ધારોકે $X _{1}, X _{2}, \ldots, X _{18}$ એ $18$ અવલોકન છે કે જેથી $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ અને $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ જ્યાં $\alpha$ અને $\beta$ ભિન્ન વાસ્તવિક સંખ્યાઓ છે. જે આ અવલોકનોનું પ્રમાણિત વિચલન $1$ હોય, તો $|\alpha-\beta|$ નું મૂલ્ય ........ થાય. .

  • [JEE MAIN 2021]

વિધાન $- 1$  : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.

વિધાન $- 2$  : પ્રથમ $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$  છે અને પ્રથમ  $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.

ધારો કે $5$ અવલોકનો $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ નાં મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ છે.જો પ્રથમ $4$ અવલોકનોમાં મધ્યક અને વિચરણ અનુક્રમે $\frac{7}{2}$ અને $a$ હોય,તો $\left(4 a+x_{5}\right)=\dots\dots$

  • [JEE MAIN 2022]

 $40$ અવલોકનનું સરેરાશ વિચલન અને પ્રમાણિત વિચલન અનુક્રમે $30$ અને  $5$ છે. જો પછીથી માલૂમ પડ્યું કે બે અવલોકનો  $12$ અને $10$ ભૂલથી લેવાય ગયા છે . જો $\sigma$ એ અવલોકનો દૂર કર્યા પછીનું પ્રમાણિત વિચલન હોય તો  $38 \sigma^{2}$ ની કિમંત $.........$ થાય.

  • [JEE MAIN 2022]