નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો :
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
Presenting the data in tabular form (Table), we get
${x_i}$ | ${f_i}$ | ${f_i}{x_i}$ | ${{x_i} - \bar x}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$4$ | $3$ | $12$ | $-10$ | $100$ | $300$ |
$8$ | $5$ | $40$ | $-6$ | $36$ | $180$ |
$11$ | $9$ | $99$ | $-3$ | $9$ | $81$ |
$17$ | $5$ | $85$ | $3$ | $9$ | $45$ |
$20$ | $4$ | $80$ | $6$ | $36$ | $144$ |
$24$ | $3$ | $72$ | $10$ | $100$ | $300$ |
$32$ | $1$ | $32$ | $18$ | $324$ | $324$ |
$30$ | $420$ | $1374$ |
$N = 30,\sum\limits_{i = 1}^7 {{f_i}{x_i}} = 420,\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2} = 1374} $
Therefore $\bar x = \frac{{\sum\limits_{i = 1}^7 {{f_i}{x_i}} }}{N} = \frac{1}{{30}} \times 420 = 14$
Hence Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
$\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
and Standard deviation $\left( \sigma \right) = \sqrt {45.8} = 6.77$
$15$ અવલોકનોનાં મધ્યક અને પ્રમાણત વિચલન અનુક્રમે $8$ અને $3$ માલુમ પડયા છે. ફરી ચકાસણી કરતાં એવું માલુમ પડયુ અવલોકન $20$ ને ભૂલથી $5$ વાંચવામાં આવ્યું હતું. તો સાચા વિચરણનું મૂલ્ય..............છે
ગ્રૂપના પહેલા સેમ્પલમાં કુલ $100$ વસ્તુ છે કે જેનો મધ્યક $15$ અને પ્રમાણિત વિચલન $3 $ છે અને જો પૂરા ગ્રૂપમાં કુલ $250$ વસ્તુ છે કે જેનો મધ્યક $15.6$ એન પ્રમાણિત વિચલન $\sqrt{13.44}$ હોય તો બીજા સેમ્પલનું પ્રમાણિત વિચલન મેળવો.
ધારો કે $x_1, x_2 ……, x_n $ એ વિચલન $X$ વડે લીધેલા મૂલ્ય છે અને $y_1, y_2, …, y_n $ એ વિચલન $ Y $ વડે લીધેલા એવા મૂલ્યો છે કે જેથી $y_i = ax_i + b,$ કે જ્યાં $ i = 1, 2, ….., n$ થાય તો...
જો આપેલ આવ્રુતિ વિતરણનો વિચરણ $50$ હોય તો $x$ ની કિમત મેળવો.
Class | $10-20$ | $20-30$ | $30-40$ |
Frequency | $2$ | $x$ | $2$ |