ધારો કે $10$ અવલોકનો $x_1, x_2, \ldots, x_{10}$ એવા છે કે જેથી $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ અને $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, જ્યાં $\alpha$ અને $\beta$ ધન પૂણાંક છે. ધારો કે અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $\frac{6}{5}$ અને $\frac{84}{25}$ છે. તો $\frac{\beta}{\alpha}=$.............................
$2$
$\frac{3}{2}$
$\frac{5}{2}$
$1$
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
જો $n$ અવલોકનો $x_1, x_2, …… x_n$ નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $\bar x$અને $\sigma$ હોય તો અવલોકનોના વર્ગનો સરવાળો કેટલો થાય ?
સંખ્યાઓ $a, b, 8, 5, 10$ નો મધ્યક $6$ છે તથા તેમનું વિચરણ $6.8$ છે.જો આ સંખ્યાઓનું મધ્યક થી સરેરાશ વિચલન $M$હોય,તો $25\,M=\dots\dots\dots$
જો આપેલ દરેક $n$ અવલોકનો ને કોઈ ધન સંખ્યા $'k'$ વડે ગુણવવામાં આવે તો નવા અવલોકનોના ગણ માટે
વિચલ $x$ અને $u $ એ $u\,\, = \,\,\frac{{x\,\, - \,\,a}}{h}$વડે સંબંધીત હોય તો $\sigma_x$ અને $\sigma_u$ વચ્ચેનો સાચો સંબંધ $= …….$