એક વિદ્યાર્થીએ $100$ અવલોકનોનો મધ્યક $40$ અને પ્રમાણિત વિચલન $5.1$ મેળવ્યા છે, પરંતુ એણે ભૂલથી એક અવલોકન $40$ ને બદલે $50$ લઈ લીધું હતું, તો સાચો મધ્યક અને પ્રમાણિત વિચલન શું છે?
Given that number of observations $(n)=100$
$\text { Incorrect mean }(\bar{x})=40$
Incorrect standard deviation $(\sigma)=5.1$
We know that $\bar x = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i}} $
i.e. $40 = \frac{1}{{100}}\sum\limits_{i = 1}^{100} {{x_i}} $ or $\sum\limits_{i = 1}^{100} {{x_i}} = 4000$
i.e., Incorrect sum of observations $=4000$
Thus the correct sum of observations $=$ Incorrect sum $-50+40$
$=4000-50+40=3990$
Hence Correct mean $=\frac{\text { correct sum }}{100}=\frac{3990}{100}=39.9$
Also Standard deviation $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $
$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - {{\left( {\bar x} \right)}^2}} } $
i.e. $5.1 = \sqrt {\frac{1}{{100}} \times Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {40} \right)}^2}} } $
or $26.01 = \frac{1}{{100}} \times Incorrect\sum\limits_{i = 1}^n {x_i^2 - 1600} $
Therefore $Incorrect\sum\limits_{i = 1}^n {x_i^2 = 100\left( {26.01 + 1600} \right) = 162601} $
Now $Correct\sum\limits_{i = 1}^n {x_i^2} = Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {50} \right)}^2} + {{\left( {40} \right)}^2}} $
$=162601-2500+1600=161701$
Therefore Correct standard deviation
$=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$
$=\sqrt{\frac{161701}{100}-(39.9)^{2}}$
$=\sqrt{1617.01-1592.01}=\sqrt{25}=5$
જો માહિતી $x_1, x_2, ...., x_{10}$ એવી હોય કે જેથી પ્રથમ ચાર અવલોકનોનો મધ્યક $11$ અને બાકીના છ અવલોકનોનો મધ્યક $16$ તથા બધા અવલોકનોના વર્ગોનો સરવાળો $2,000$ થાય તો આ માહિતીનું પ્રમાણિત વિચલન મેળવો
જે શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $n$ પદો માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો
$7$ અવલોકનો, $1, 2, 3, 4, 5, 6. 7 $ નું પ્રમાણિત વિચલન :
જો વિતરણનું દરેક અવલોકન જેનું પ્રમાણિત વિચલન $\sigma$, એ $\lambda$, જેટલું વધતું હોય તો નવા અવલોકનોનું વિચરણ શોધો.
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =