એક વિદ્યાર્થીએ $100$ અવલોકનોનો મધ્યક $40$ અને પ્રમાણિત વિચલન $5.1$ મેળવ્યા છે, પરંતુ એણે ભૂલથી એક અવલોકન $40$ ને બદલે $50$ લઈ લીધું હતું, તો સાચો મધ્યક અને પ્રમાણિત વિચલન શું છે?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that number of observations $(n)=100$

$\text { Incorrect mean }(\bar{x})=40$

Incorrect standard deviation $(\sigma)=5.1$

We know that   $\bar x = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i}} $

i.e.   $40 = \frac{1}{{100}}\sum\limits_{i = 1}^{100} {{x_i}} $  or  $\sum\limits_{i = 1}^{100} {{x_i}}  = 4000$

i.e.,     Incorrect sum of observations $=4000$

Thus    the correct sum of observations $=$ Incorrect sum $-50+40$

$=4000-50+40=3990$

Hence      Correct mean $=\frac{\text { correct sum }}{100}=\frac{3990}{100}=39.9$

Also     Standard deviation  $\sigma  = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $

$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - {{\left( {\bar x} \right)}^2}} } $

i.e.     $5.1 = \sqrt {\frac{1}{{100}} \times Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {40} \right)}^2}} } $

or     $26.01 = \frac{1}{{100}} \times Incorrect\sum\limits_{i = 1}^n {x_i^2 - 1600} $

Therefore   $Incorrect\sum\limits_{i = 1}^n {x_i^2 = 100\left( {26.01 + 1600} \right) = 162601} $

Now   $Correct\sum\limits_{i = 1}^n {x_i^2}  = Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {50} \right)}^2} + {{\left( {40} \right)}^2}} $

$=162601-2500+1600=161701$

Therefore Correct standard deviation

$=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$

$=\sqrt{\frac{161701}{100}-(39.9)^{2}}$

$=\sqrt{1617.01-1592.01}=\sqrt{25}=5$

Similar Questions

$5$ અવલોકન વાળી માહિતીનો મધ્યક અને વિચરણ અનુક્રમે  $5$ અને $8$ છે. જો  $3$ અવલોકનો $1,3,5$ હોય તો  બાકીના બે અવલોકનોનો ઘનનો સરવાળો મેળવો.

  • [JEE MAIN 2023]

ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.

  • [JEE MAIN 2024]

જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.

$x_i$ $2$ $4$ $6$ $8$ $10$ $12$ $14$ $16$
$f_i$ $4$ $4$ $\alpha$ $15$ $8$ $\beta$ $4$ $5$

  • [JEE MAIN 2023]

નીચે આપેલ માહિતી માટે પ્રમાણિત વિચલન શોધો : 

${x_i}$ $3$ $8$ $13$ $18$ $25$
${f_i}$ $7$ $10$ $15$ $10$ $6$

સંખ્યાઓ $3, 4, 5, 6, 7 $ નું સરેરાશ વિચલન શોધો.