સંખ્યાઓ $3, 4, 5, 6, 7 $ નું સરેરાશ વિચલન શોધો.
$1.2$
$2.4$
$1.8$
$3.2$
બિંદુ $c$ આગળ $x_1, x_2 ……, x_n$ અવલોકનોના ગણનો મધ્યક વર્ગ વિચલન $\frac{1}{n}\,\,\sum\limits_{i\, = \,1}^n {{{({x_i}\, - \,\,c)}^2}} $વડે દર્શાવાય છે. $-2$ અને $2 $ નાં મધ્યક વર્ગ વિચલન અનુક્રમે $18$ અને $10$ હોય, તો આ ગણના અવલોકનોનું પ્રમાણિત વિચલન શોધો.
ધારો કે $10$ અવલોકનો $x_1, x_2, \ldots, x_{10}$ એવા છે કે જેથી $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ અને $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, જ્યાં $\alpha$ અને $\beta$ ધન પૂણાંક છે. ધારો કે અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $\frac{6}{5}$ અને $\frac{84}{25}$ છે. તો $\frac{\beta}{\alpha}=$.............................
આપેલ આવૃતિ વિતરણ :
ચલ $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
આવૃતિ $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે
જો આઠ સંખ્યાઓ $3,7,9,12,13,20, x$ અને $y$ નું મધ્યક અને વિચરણ અનુક્રમે $10$ અને $25$ હોય તો $\mathrm{x} \cdot \mathrm{y}$ મેળવો.
આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $9$ અને $9.25$ છે, જો આમાંથી છ અવલોકનો $6, 7, 10, 12, 12$ અને $13$ હોય, તો બાકીનાં બે અવલોકનો શોધો.