નીચે આપેલ માહિતી માટે પ્રમાણિત વિચલન શોધો : 

${x_i}$ $3$ $8$ $13$ $18$ $25$
${f_i}$ $7$ $10$ $15$ $10$ $6$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let us form the following Table :

${x_i}$ ${f_i}$ ${f_i}{x_i}$ ${x_i}^2$ ${f_i}{x_i}^2$
$3$ $7$ $21$ $9$ $63$
$8$ $10$ $80$ $64$ $640$
$13$ $15$ $195$ $169$ $2535$
$18$ $10$ $180$ $324$ $3240$
$23$ $6$ $138$ $529$ $3174$
  $48$ $614$   $9652$

Now, by formula $(3),$ we have

$\sigma  = \frac{1}{N}\sqrt {N\sum {{f_i}x_i^2 - {{\left( {\sum {{f_i}{x_i}} } \right)}^2}} } $

$=\frac{1}{48} \sqrt{48 \times 9652-(614)^{2}}$

$=\frac{1}{48} \sqrt{463296-376996}$

$=\frac{1}{48} \times 293.77=6.12$

Therefore, Standard deviation $(c)=6.12$

Similar Questions

એક કસોટીમાં વિદ્યાર્થીઓએ મેળવેલ ગુણના મધ્યક તથા વિચરણ અનુક્રમે $10$ અને $4$ છે. ત્યાર બાદ, એક વિદ્યાર્થીના ગુણ $8$ થી વધારીને $12$ કરવામાં આવે છે. જો ગુણનો નવો મધ્યક $10.2$ હોય, તો તેમનું નવું વિચરણ $...............$ થશે.

  • [JEE MAIN 2023]

જો વિતરણના દરેક પદને $2 $ જેટલું વધારવામાં આવે તો વિતરણનો મધ્‍ધ્યસ્થ અને પ્રમાણિત વિચલન કેટલું થશે ?

પ્રથમ $n$  પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.

ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે. 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

 જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$

  • [JEE MAIN 2023]

સંખ્યાઓ $3,7, x$ અને $y(x>y)$ નો મધ્યક અને વિચરણ અનુક્રમે  $5$ અને $10$ છે. તો ચાર સંખ્યાઓ $3+2 \mathrm{x}, 7+2 \mathrm{y}, \mathrm{x}+\mathrm{y}$ અને $x-y$ નો મધ્યક મેળવો.

  • [JEE MAIN 2021]