The mean and $S.D.$ of the marks of $200$ candidates were found to be $40$ and $15$ respectively. Later, it was discovered that a score of $40$ was wrongly read as $50$. The correct mean and $S.D.$ respectively are...
$14.98, 39.95$
$39.95, 14.98$
$39.95, 224.5$
None of these
The variance $\sigma^2$ of the data is $ . . . . . .$
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
Let $x_1, x_2,........,x_n$ be $n$ observations such that $\sum {{x_i}^2 = 300} $ and $\sum {{x_i} = 60} $ on value of $n$ among the following is
Suppose a class has $7$ students. The average marks of these students in the mathematics examination is $62$, and their variance is $20$ . A student fails in the examination if $he/she$ gets less than $50$ marks, then in worst case, the number of students can fail is
Mean and variance of a set of $6$ terms is $11$ and $24$ respectively and the mean and variance of another set of $3$ terms is $14$ and $36$ respectively. Then variance of all $9$ terms is equal to