दीर्घवृत्त की जीवा के ध्रुवों का बिन्दुपथ होगा

  • A

    $\frac{{{a^6}}}{{{x^2}}} + \frac{{{b^6}}}{{{y^2}}} = {({a^2} - {b^2})^2}$

  • B

    $\frac{{{a^3}}}{{{x^2}}} + \frac{{{b^3}}}{{{y^2}}} = {({a^2} - {b^2})^2}$

  • C

    $\frac{{{a^6}}}{{{x^2}}} + \frac{{{b^6}}}{{{y^2}}} = {({a^2} + {b^2})^2}$

  • D

    $\frac{{{a^3}}}{{{x^2}}} + \frac{{{b^3}}}{{{y^2}}} = {({a^2} + {b^2})^2}$

Similar Questions

माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है

$(A)$ $e_1^2+e_2^2=\frac{43}{40}$

$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$

$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$

$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$

  • [IIT 2015]

उस दीर्घवृत्त का समीकरण जिसका केन्द्र मूलबिन्दु है तथा जो बिन्दुओं $(-3, 1)$ तथा $(2, -2)$ से गुजरता है, है

आयत $R$ जिसकी भुजायें निर्देशांक अक्षों के समान्तर है के अन्दर दीर्घवत्त $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ को उत्कीर्णित (inscribe) किया गया है। एक अन्य दीर्घवत्त $E _2$ जो बिन्दु $(0,4)$ से गुजरता है और आयत $R$ को परिगत (circumscribe) करता है, की उत्केन्द्रता (eccentricity) निम्न है

  • [IIT 2012]

एक दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ और एक नाभि बिन्दु $P\left( {\frac{1}{2},\;1} \right)$ है। इसकी एक नियता वृत्त ${x^2} + {y^2} = 1$ और अतिपरवलय ${x^2} - {y^2} = 1$ की बिन्दु $P$ के निकट स्थित उभयनिष्ठ स्पर्श रेखा है। दीर्घवृत्त का मानक रूप में समीकरण होगा

  • [IIT 1996]

माना कि $F_1\left(x_1, 0\right)$ और $F_2\left(x_2, 0\right)$ (जिसमें $x_1<0, x_2>0$ ) दीर्घवृत्त (ellipse) $\frac{x_2^2}{9}+\frac{y^2}{8}=1$ की नाभियाँ (Foci) हैं। माना कि एक परवलय (parabola) जिसका शीर्ष (vertex) मूलबिन्दु (origin) पर और नाभि (focus) $F_2$ पर है, दीर्घवृत्त को प्रथम चतुर्थांश (first quadrant) में $M$ पर और चतुर्थ चतुर्थांश (fourth quadrant) में $N$ पर प्रतिच्छेदित करता है।

($1$) त्रिभुज $F_1 M N$ का लंबकेन्द्र (orthocentre) है

$(A)$ $\left(-\frac{9}{10}, 0\right)$ $(B)$ $\left(\frac{2}{3}, 0\right)$ $(C)$ $\left(\frac{9}{10}, 0\right)$ $(D)$ $\left(\frac{2}{3}, \sqrt{6}\right).$

($2$) यदि दीर्घवृत्त के बिन्दुओं $M$ और $N$ पर स्परिखाएँ (tangents) $R$ पर मिलती हैं और परवलय के बिन्दु $M$ पर अभिलंब $x$-अक्ष को $Q$ पर मिलता है, तब त्रिभुज $M Q R$ के क्षेत्रफल और चतुर्भुज (quadrilateral) $M F_1 N F_2$ के क्षेत्रफल का अनुपात (ratio) है

$(A)$ $3: 4$  $(B)$ $4: 5$  $(C)$ $\sec 5: 8$  $(D)$ $2: 3$

दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)

  • [IIT 2016]