બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
$2ax + 2by - ({a^2} + {b^2} + {p^2}) = 0$
$2ax + 2by - ({a^2} - {b^2} + {p^2}) = 0$
${x^2} + {y^2} - 3ax - 4by + ({a^2} + {b^2} - {p^2}) = 0$
${x^2} + {y^2} - 2ax - 3by + ({a^2} - {b^2} - {p^2}) = 0$
જો વર્તૂળ $x^{2} + y^{2} = 10x$ ની જીવા $y = 2x $ હોય, તો જે વર્તૂળનો વ્યાસ આ જીવા હોય તે વર્તૂળનું સમીકરણ.....
જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.
વિધાન $(A) :$ જો બે વર્તૂળો $ x^2 + y^2 + 2gx + 2fy = 0 $ અને $ x^2 + y^2 + 2gx + 2fy = 0 $ એકબીજાને સ્પર્શેં, તો $f'g = fg'$
કારણ $(R) :$ જો તેમના કેન્દ્રોને જોડતી રેખા બધા જ શક્ય સામાન્ય સ્પર્શકોને લંબ હોય, તો બે વર્તૂળો એકબીજાને સ્પર્શેં.
ધારોકે વર્તુળો $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ અને $C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$ એકબીજાને $(6,6)$ આગળ બહારથી સ્પર્શ છે. જો બિંદુુ (6, 6) એ, વર્તુળો $C_1$ અને $C_2$ ના કેન્દ્રોને જોડતી રેખાખંડનું $2:1$ ના ગુણોત્તર માં અંદરથી વિભાજન કરે, તો $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)=$ ...........
વર્તૂળો $x^{2} + y^{2} - 8x - 2y + 7 = 0$ અને $x^{2} + y^{2} - 4x + 10y + 8 = 0$ ના છેદબિંદુમાંથી પસાર થતું અને $y-$ અક્ષ પર કેન્દ્ર ધરાવતું વર્તૂળનું સમીકરણ શોધો.