The locus of centre of a circle passing through $(a, b)$ and cuts orthogonally to circle ${x^2} + {y^2} = {p^2}$, is

  • [AIEEE 2005]
  • [IIT 1988]
  • A

    $2ax + 2by - ({a^2} + {b^2} + {p^2}) = 0$

  • B

    $2ax + 2by - ({a^2} - {b^2} + {p^2}) = 0$

  • C

    ${x^2} + {y^2} - 3ax - 4by + ({a^2} + {b^2} - {p^2}) = 0$

  • D

    ${x^2} + {y^2} - 2ax - 3by + ({a^2} - {b^2} - {p^2}) = 0$

Similar Questions

If the curves, $x^{2}-6 x+y^{2}+8=0$ and $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ touch each other at a point, then the largest value of $\mathrm{k}$ is

  • [JEE MAIN 2020]

Figure shows $\Delta  ABC$ with $AB = 3, AC = 4$  &  $BC = 5$. Three circles $S_1, S_2$  &  $S_3$ have their centres on $A, B  $ &  $C$ respectively and they externally touches each other. The sum of areas of three circles is

The equation of the circle passing through the point $(-2, 4)$ and through the points of intersection of the circle ${x^2} + {y^2} - 2x - 6y + 6 = 0$ and the line $3x + 2y - 5 = 0$, is

The equation of the circle which intersects circles ${x^2} + {y^2} + x + 2y + 3 = 0$, ${x^2} + {y^2} + 2x + 4y + 5 = 0$and ${x^2} + {y^2} - 7x - 8y - 9 = 0$ at right angle, will be

If two circles ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ and ${x^2} + {y^2} - 8x + 2y + 8 = 0$ intersect in two distinct points, then

  • [AIEEE 2003]