વર્તૂળો $x^{2} + y^{2} - 8x - 2y + 7 = 0$ અને $x^{2} + y^{2} - 4x + 10y + 8 = 0$ ના છેદબિંદુમાંથી પસાર થતું અને $y-$ અક્ષ પર કેન્દ્ર ધરાવતું વર્તૂળનું સમીકરણ શોધો.
$x^{2} + y^{2}+ 24y + 11 = 0$
$x^{2} + y^{2}+ 22y + 9 = 0$
$x^{2}- y^{2}+ 20y + 13 = 0$
એકપણ નહિ
વર્તૂળો $x^{2} + y^{2} = 1$ અને $(x - h)^{2} + y^{2} = 1 $ ના સામાન્ય સ્પર્શકની અનુપ્રસ્થ લંબાઈ $2\,\,\sqrt 3 $છે, તો $h$ નું મુલ્ય મેળવો.
બે વર્તૂળો ${x^2} + {y^2} = ax$ અને${x^2} + {y^2} = {c^2}$ એકબીજા ને સ્પર્શે છે,તો .
$r$ ત્રિજ્યાવાળા ત્રણ વર્તૂળો એકબીજાને સ્પર્શેં છે. આપેલ ત્રણેય વર્તૂળોને અંદરતી સ્પર્શતા વર્તૂળની ત્રિજ્યા :
વર્તૂળો ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ અને ${x^2} + {y^2} - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુમાં છેદે તો,
જો વર્તુળ $C_1 : x^2 + y^2 - 2x- 1\, = 0$ પરના બિંદુ $(2, 1)$ પાસે આવેલ સ્પર્શક વર્તુળ $C_2$ જેનું કેન્દ્ર $(3, - 2)$ હોય તેની જીવા છે જેની લંબાઈ $4$ થાય તો વર્તુળ $C_2$ ની ત્રિજ્યા મેળવો.