रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है
$r$
${r^2}$
$2r$
$\sqrt r $
यदि किसी वक्र के बिन्दु $P(x,y)$ पर स्पर्श रेखा मूल बिन्दु को बिन्दु $P$ से मिलाने वाली रेखा के लम्बवत् हो, तो वक्र है
रेखा $3x + 4y = 1$ के समान्तर वृत्त $5{x^2} + 5{y^2} = 1$ की स्पर्श रेखा का समीकरण है
वृत्त के बिन्दु $(3, 4)$ पर अभिलम्ब, वृत्त को $(-1, -2)$ पर काटता है तब वृत्त का समीकरण है
मूल बिन्दु से होकर जाने वाले वृत्त ${(x - 1)^2} + {y^2} = 1$ की जीवाओं के मध्य बिन्दुओं का बिन्दुपथ है
बिन्दु $(\alpha ,\beta )$ से वृत्त $a{x^2} + a{y^2} = {r^2}$ पर खींची गयी स्पर्श रेखा की लम्बाई का वर्ग है