The line $ax + by + c = 0$ is a normal to the circle ${x^2} + {y^2} = {r^2}$. The portion of the line $ax + by + c = 0$ intercepted by this circle is of length

  • A

    $r$

  • B

    ${r^2}$

  • C

    $2r$

  • D

    $\sqrt r $

Similar Questions

If the straight line $ax + by = 2;a,b \ne 0$ touches the circle ${x^2} + {y^2} - 2x = 3$ and is normal to the circle ${x^2} + {y^2} - 4y = 6$, then the values of a and b are respectively

The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-

Given the circles ${x^2} + {y^2} - 4x - 5 = 0$and ${x^2} + {y^2} + 6x - 2y + 6 = 0$. Let $P$ be a point $(\alpha ,\beta )$such that the tangents from P to both the circles are equal, then

If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the equation of this circle is

Match the statements in Column $I$ with the properties Column $II$ and indicate your answer by darkening the appropriate bubbles in the $4 \times 4$ matrix given in the $ORS$.

Column $I$ Column $II$
$(A)$ Two intersecting circles $(p)$ have a common tangent
$(B)$ Two mutually external circles $(q)$ have a common normal
$(C)$ two circles, one strictly inside the other $(r)$ do not have a common tangent
$(D)$ two branches of a hyperbola $(s)$ do not have a common normal

  • [IIT 2007]