The line $ax + by + c = 0$ is a normal to the circle ${x^2} + {y^2} = {r^2}$. The portion of the line $ax + by + c = 0$ intercepted by this circle is of length
$r$
${r^2}$
$2r$
$\sqrt r $
If the straight line $ax + by = 2;a,b \ne 0$ touches the circle ${x^2} + {y^2} - 2x = 3$ and is normal to the circle ${x^2} + {y^2} - 4y = 6$, then the values of a and b are respectively
The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-
Given the circles ${x^2} + {y^2} - 4x - 5 = 0$and ${x^2} + {y^2} + 6x - 2y + 6 = 0$. Let $P$ be a point $(\alpha ,\beta )$such that the tangents from P to both the circles are equal, then
If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the equation of this circle is
Match the statements in Column $I$ with the properties Column $II$ and indicate your answer by darkening the appropriate bubbles in the $4 \times 4$ matrix given in the $ORS$.
Column $I$ | Column $II$ |
$(A)$ Two intersecting circles | $(p)$ have a common tangent |
$(B)$ Two mutually external circles | $(q)$ have a common normal |
$(C)$ two circles, one strictly inside the other | $(r)$ do not have a common tangent |
$(D)$ two branches of a hyperbola | $(s)$ do not have a common normal |