मानक रूप में एक दीर्घवृत्त के लघु अक्ष (y-अक्ष के अनुदिश) की लम्बाई $\frac{4}{\sqrt{3}}$ है। यदि यह दीर्घवृत्त, रेखा $x +6 y =8$ को स्पर्श करता है, तो इसकी उत्केन्द्रता है
$\sqrt{\frac{5}{6}}$
$\frac{1}{2} \sqrt{\frac{11}{3}}$
$\frac{1}{3} \sqrt{\frac{11}{3}}$
$\frac{1}{2} \sqrt{\frac{5}{3}}$
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$ के नाभिलम्ब की लम्बाई होगी
एक दीर्घवृत्त के दीर्घ तथा लघु अक्षों की लम्बाइयाँ क्रमश: $10$ तथा $8$ हैं और उसका दीर्घ अक्ष $y$ - अक्ष है। दीर्घवृत्त के केन्द्र को मूलबिन्दु मानते हुये दीर्घवृत्त का समीकरण है
शांकव $16{x^2} + 7{y^2} = 112$ की उत्केन्द्रता है
दीर्घवृत्त $\frac{x^2}{25}+\frac{y^2}{16}=1$ की उस जीवा, जिसका मध्य बिंदु $\left(1, \frac{2}{5}\right)$ है, की लम्बाई है :
यदि दो दीर्घवृत्तों $\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1$ तथा $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की उत्केन्द्रतायें बराबर हो, तो $\frac{a}{b}$ का मान होगा