दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$ के नाभिलम्ब की लम्बाई होगी
$98/6$
$72/7$
$72/14$
$98/12$
दीर्घवृत्त $4{x^2} + 9{y^2} = 36$ के बिन्दु $(3, -2)$ पर स्पर्श रेखा तथा अभिलम्ब के समीकरण क्रमश: हैं
दीर्घवृत्त ${e_1}$ के किसी बिन्दु पर स्पर्श रेखा तथा अक्षों से निर्मित त्रिभुज का न्यूनतम क्षेत्रफल है
माना परवलय $y ^2=4 x$ की नाभिय जीवा $PQ$ इस प्रकार है कि यह बिन्दु $(3,0)$ पर $\frac{\pi}{2}$ का कोण अन्तरित करती है। माना रेखाखण्ड $PQ$, दीर्घवृत्त $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2 > b^2$ की नाभिय जीवा भी है। यदि दीर्घवृत्त $E$ की उत्केन्द्रता $e$ है, तो $\frac{1}{ e ^2}$ का मान है :
माना $E _{1}: \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a > b$ एक दीर्घवत्त है। माना $E _{2}$ एक और दीर्घवत्त है, जो $E _{1}$ के दीर्घ अक्ष के छोरों को स्पर्श करता है तथा $E_{2}$ की नाभियोँ, $E_{1}$ के लघु अक्ष के छोरों पर है। यदि $E _{1}$ तथा $E _{2}$ की उत्केन्द्रता बराबर है, तो उसका मान है -
माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________.