शांकव $16{x^2} + 7{y^2} = 112$ की उत्केन्द्रता है
$3\over \sqrt 7 $
$7\over{16}$
$3\over4$
$4\over3$
उस दीर्घवृत्त का समीकरण, जिसके शीर्ष $(2, -2), (2, 4)$ हैं तथा उत्केन्द्रता $\frac{1}{3}$ है, होगा
शांकव $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$के अक्षों की लम्बाईयाँ हैं
उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि $(3, -3)$ और संगत शीर्ष $(4, -3)$ है, होगा
एक दीर्घवत्त, $E : \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a ^{2}> b ^{2}$, बिन्दु $\left(\sqrt{\frac{3}{2}}, 1\right)$ से होकर जाता है तथा उसकी उत्केन्द्रता $\frac{1}{\sqrt{3}}$ है। यदि एक वत्त जिसका केन्द्र $E$ की नाभि $F (\alpha, 0), \alpha>0$ पर और त्रिज्या $\frac{2}{\sqrt{3}}$ है, दीर्घवत्त $E$ को दो बिन्दुओं $P$ तथा $Q$ पर काटता है, तो $PQ ^{2}$ बराबर है
दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$के सापेक्ष बिन्दु $(1, 3)$ की स्थिति है