The general value of $\theta $ satisfying ${\sin ^2}\theta + \sin \theta = 2$ is
$n\pi + {( - 1)^n}\frac{\pi }{6}$
$2n\pi + \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{2}$
$n\pi + {( - 1)^n}\frac{\pi }{3}$
Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$
If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is
Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.
The general value of $\theta $ in the equation $2\sqrt 3 \cos \theta = \tan \theta $, is
Let $f(x) = \cos \sqrt {x,} $ then which of the following is true