Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.
$S =\left\{\frac{\pi}{12}\right\}$
$S =\left\{\frac{2 \pi}{3}\right\}$
$\sum_{\theta \in S} \theta=\frac{\pi}{2}$
$\sum_{\theta \in S} \theta=\frac{3 \pi}{4}$
The number of solutions of the equation $2 \theta-\cos ^{2} \theta+\sqrt{2}=0$ is $R$ is equal to
The number of solutions of the equation $\sin x=$ $\cos ^{2} x$ in the interval $(0,10)$ is
Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
If $\tan 2\theta \tan \theta = 1$, then the general value of $\theta $ is
If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $