If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is

  • A

    $2n\pi \pm \frac{\pi }{6}$

  • B

    $2n\pi \pm \frac{\pi }{3}$

  • C

    $n\pi \pm \frac{\pi }{3}$

  • D

    $n\pi \pm \frac{\pi }{6}$

Similar Questions

If $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ then $tan(x/2)cot(y/2) =$

The equation $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ has

The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is

The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is

The value of the expression

$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2  sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than