આપેલ માહિતી નો વિચરણ $160$ હોય તો $A$ ની કિમત મેળવો જ્યાં $A$ એ ધન પૂર્ણાક છે
$\begin{array}{|l|l|l|l|l|l|l|} \hline X & A & 2 A & 3 A & 4 A & 5 A & 6 A \\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$
$\begin{array}{|c|c|c|c|} \hline x & f_{i} & f_{1} x_{i} & f x_{i}^{2} \\ \hline A & 2 & 2 A & 2 A^{2} \\ \hline 2 A & 1 & 2 A & 4 A^{2} \\ \hline 3 A & 1 & 3 A & 9 A^{2} \\ \hline 4 A & 1 & 4 A & 16 A^{2} \\ \hline 5 A & 1 & 5 A & 25 A^{2} \\ \hline 6 A & 1 & 6 A & 36 A^{2} \\ \hline \text { Total } & n=7 & \Sigma f_{i}=22 A & \Sigma f_{i}^{2}=92 A^{2} \\ \hline \end{array}$
$\therefore \quad \sigma^{2}=\frac{\Sigma f_{t} x_{1}^{2}}{n}-\left(\frac{\Sigma f_{1} x_{1}}{n}\right)^{2}$
$\Rightarrow \quad 160=\frac{92 A^{2}}{7}-\left(\frac{22 A}{7}\right)^{2} \Rightarrow 160=\frac{92 A^{2}}{7}-\frac{484 A^{2}}{49}$
$\Rightarrow \quad 160=(644-484) \frac{A^{2}}{49} \Rightarrow 160=\frac{160 A^{2}}{49}$
$\Rightarrow \quad A^{2}=49 \quad \therefore \quad A=7$
નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?
ગુણ |
$10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
સમૂહ $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
સમૂહ $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
$50 $ મધ્યક વાળા $10$ અવલોકનોના વિચલનના વર્ગનો સરવાળો $250 $ હોય તો વિચરણનો ચલનાંક કેટલો થાય ?
જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.
અવલોકનો $^{10}C_0$ , $^{10}C_1$ , $^{10}C_2$ ,.... $^{10}C_{10}$ નો વિચરણ મેળવો.
પ્રથમ $50 $ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ .. . . . . .છે.