જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.

  • [JEE MAIN 2018]
  • A

    $4$

  • B

    $2$

  • C

    $3$

  • D

    $9$

Similar Questions

વીસ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ છે.પુનઃતપાસ કરતાં માલૂમ પડ્યું કે અવલોકન $8$ ખોટું છે. ખોટા અવલોકનને બદલે $12$ મૂકવામાં આવે તો સાચો મધ્યક અને સાચું પ્રમાણિત વિચલન શોધો.

જો તો  વિચરણ $\sigma^2$ =................................

$x_i$ $0$ $1$ $5$ $6$ $10$ $12$ $17$
$f_i$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

 

  • [JEE MAIN 2024]

$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$  ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$  બરાબર નીચેના પૈકી કયું હશે ?

$100$ અવલોકનોના સમૂહનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $3 $ છે. પછીથી જાણ થાય છે કે ત્રણ અવલોકનો $21, 21$ અને $18$ ખોટાં હતાં. આ ખોટાં અવલોકનોને દૂર કરવામાં આવે તો મધ્યક અને પ્રમાણિત વિચલન શોધો.

$ \bar x , M$ અને  $\sigma^2$ એ $n$ અવલોકનો $x_1 , x_2,...,x_n$ અને $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, જ્યાં $a$ એ કોઈ પણ સંખ્યા હોય તે  માટે અનુક્રમે મધ્યક બહુલક અને વિચરણ છે 
વિધાન $I$:  $d_1, d_2,.....d_n$ નો વિચરણ $\sigma^2$ થાય 
વિધાન $II$ : $d_1 , d_2, .... d_n$ નો મધ્યક અને બહુલક અનુક્રમે $-\bar x -a$ અને $- M - a$ છે

  • [JEE MAIN 2014]