वृत्त ${x^2} + {y^2} = {a^2}$ पर रेखा $\sqrt 3 x + y + 3 = 0$ के समान्तर स्पर्श रेखाओं के समीकरण हैं
$\sqrt 3 x + y \pm 2a = 0$
$\sqrt 3 x + y \pm a = 0$
$\sqrt 3 x + y \pm 4a = 0$
इनमें से कोई नहीं
एक वृत्त $C$, बिन्दु $(4,0)$ से होकर जाता है तथा वृत्त $x ^{2}+ y ^{2}+4 x -6 y =12$ को बिन्दु $(1,-1)$ पर बाह्य स्पर्श करता है, तो $C$ की त्रिज्या है
रेखा $(x - a)\cos \alpha + (y - b)$ $\sin \alpha = r$, वृत्त ${(x - a)^2} + {(y - b)^2} = {r^2}$ की एक स्पर्श रेखा होगी
माना कि बिन्दु $B$ रेखा $8 x -6 y -23=0$ के सापेक्ष बिन्दु $A (2,3)$ का प्रतिबिम्ब (reflection) है। माना कि $\Gamma_A$ और $\Gamma_{ B }$ क्रमश: त्रिज्याएँ $2$ और $1$ वाले वृत्त हैं, जिनके केन्द्र क्रमश: $A$ और $B$ हैं। माना कि वृत्तों $\Gamma_{ A }$ और $\Gamma_{ B }$ की एक ऐसी उभयनिष्ठ स्पर्श (common tangent) रेखा $T$ हैं, दोनों वृत्त जिसके एक ही तरफ हैं। यदि $C$, बिन्दुओं $A$ और $B$ से जाने वाली रेखा और $T$ का प्रतिच्छेद बिन्दु है, तब रेखाखण्ड (line segment) $AC$ की लम्बाई है . . . . .
रेखा $y = x + c$ वृत्त ${x^2} + {y^2} = 1$ को दो सम्पाती बिन्दुओं पर काटेगी, यदि
उस वृत्त का समीकरण, जो निर्देशांक्षों को एवं रेखा $\frac{x}{3} + \frac{y}{4} = 1$ को स्पर्श करता है एवं जिसका केन्द्र प्रथम चतुर्थांश में है, ${x^2} + {y^2} - 2cx - 2cy + {c^2} = 0$ है, तो $c$ का मान होगा