रेखा $y = x + c$ वृत्त ${x^2} + {y^2} = 1$ को दो सम्पाती बिन्दुओं पर काटेगी, यदि
$c = \sqrt 2 $
$c = - \sqrt 2 $
$c = \pm \sqrt 2 $
इनमें से कोई नहीं
स्पर्श-रेखा PT वत्त $x^2+y^2=4$ को बिन्दु $P(\sqrt{3}, 1)$ पर स्पर्श करती है। सरल रेखा $L, P T$ के लम्बवत् है और वत्त $(x-3)^2+y^2=1$ की स्पर्श-रेखा है।
$1.$ दोनों वत्तो की एक उभयनिष्ठ स्पर्श-रेखा (common tangent) निम्न है
$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$
$2.$ $L$ का एक सम्भावित समीकरण निम्न है -
$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा होगी यदि
यदि रेखा $lx + my + n = 0$ वृत्त ${(x - h)^2} + {(y - k)^2} = {a^2}$ की स्पर्श रेखा हो, तो
यदि $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ वृत्त ${x^2} + {y^2} = {a^2}$ को स्पर्श करती है, तब बिन्दु $(1/\alpha ,\,1/\beta )$ होगा
वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण, जो $y = mx + c$ के समान्तर हो, है