वृत्त ${x^2} + {y^2} - 2x - 4y - 4 = 0$ पर स्पर्श रेखा का समीकरण जो रेखा $3x - 4y - 1 = 0$ पर लम्ब है, होगा
$4x + 3y - 5 = 0$
$4x + 3y + 25 = 0$
$4x - 3y + 5 = 0$
$4x + 3y - 25 = 0$
वृत्त ${x^2} + {y^2} - 2k + 6y - 6 = 0$ की स्पर्श रेखा $3x - 4y + 7 = 0$ के समान्तर रेखा $3x - 4y + k = 0$ है, तब $k$ के मान हैं
वृत्त, जिसका केन्द्र $(2, -1)$ है, पर मूल बिन्दु से खींची गयी एक स्पर्श रेखा का समीकरण $3x + y = 0$ हो, तो दूसरी स्पर्श रेखा का समीकरण है
माना वत्त $x ^{2}+ y ^{2}+ ax +2 ay + c =0,( a <0)$ द्वारा $x$-अक्ष तथा $y$-अक्ष पर बनाये गये अंतःखंडों की लम्बाईयोँ क्रमशः $2 \sqrt{2}$ तथा $2 \sqrt{5}$ हैं। तो इस वत्त की एक स्पर्श रेखा, जो रेखा $x +2 y =0$ के लम्बवत है, की मूलबिंदु से न्यूनतम दूरी बराबर है
रेखा $x = y$ एक वृत्त को बिन्दु $(1,1)$ पर स्पर्श करती है। यदि यह वृत्त बिन्दु $(1,-3)$ से भी होकर जाता है, तो इसकी त्रिज्या है
वृत्त ${x^2} + {y^2} + 4x + 6y - 39 = 0$ के बिन्दु $(2, 3)$ पर खींचा गया अभिलम्ब वृत्त को पुन: जिस बिन्दु पर मिलेगा वह बिन्दु है