वृत्त ${x^2} + {y^2} + 4x + 6y - 39 = 0$ के बिन्दु $(2, 3)$ पर खींचा गया अभिलम्ब वृत्त को पुन: जिस बिन्दु पर मिलेगा वह बिन्दु है
$(6, -9)$
$(6, 9)$
$(-6, -9)$
$(-6, 9)$
एक वृत्त जिसका केन्द्र $(a, b)$ है मूल बिन्दु से गुजरता है। मूल बिन्दु पर वृत्त की स्पर्श रेखा का समीकरण है
वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(h,h)$ पर स्पषी की प्रवणता होगी
माना कि बिन्दु $B$ रेखा $8 x -6 y -23=0$ के सापेक्ष बिन्दु $A (2,3)$ का प्रतिबिम्ब (reflection) है। माना कि $\Gamma_A$ और $\Gamma_{ B }$ क्रमश: त्रिज्याएँ $2$ और $1$ वाले वृत्त हैं, जिनके केन्द्र क्रमश: $A$ और $B$ हैं। माना कि वृत्तों $\Gamma_{ A }$ और $\Gamma_{ B }$ की एक ऐसी उभयनिष्ठ स्पर्श (common tangent) रेखा $T$ हैं, दोनों वृत्त जिसके एक ही तरफ हैं। यदि $C$, बिन्दुओं $A$ और $B$ से जाने वाली रेखा और $T$ का प्रतिच्छेद बिन्दु है, तब रेखाखण्ड (line segment) $AC$ की लम्बाई है . . . . .
माना वत्त $x ^{2}+ y ^{2}=25$ के बिंदु $R (3,4)$ पर स्पर्श रेखा $x$-अक्ष तथा $y$-अक्ष को क्रमशः बिंदुओं $P$ तथा $Q$ पर मिलती है। यदि मूलबिंदु $O$ से होकर जाने वाले वत्त, जिसका केन्द्र त्रिभुज $OPQ$ का अंतः केन्द्र है, की त्रिज्या $r$ है, तो $r^{2}$ बराबर है
यदि $a > 2b > 0$ तब $m$ का धनात्मक मान जिसके लिए $y = mx - b\sqrt {1 + {m^2}} $, वृत्तों ${x^2} + {y^2} = {b^2}$ तथा ${(x - a)^2} + {y^2} = {b^2}$ की उभयनिष्ठ स्पर्श रेखा है