The equation of the tangent to the circle ${x^2} + {y^2} - 2x - 4y - 4 = 0$ which is perpendicular to $3x - 4y - 1 = 0$, is
$4x + 3y - 5 = 0$
$4x + 3y + 25 = 0$
$4x - 3y + 5 = 0$
$4x + 3y - 25 = 0$
The angle between the two tangents from the origin to the circle ${(x - 7)^2} + {(y + 1)^2} = 25$ is
A tangent $P T$ is drawn to the circle $x^2+y^2=4$ at the point $P(\sqrt{3}, 1)$. A straight line $L$, perpendicular to $P T$ is a tangent to the circle $(x-3)^2+y^2=1$.
$1.$ A common tangent of the two circles is
$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$
$2.$ A possible equation of $L$ is
$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$
Give the answer question $1$ and $2.$
The line $3x - 2y = k$ meets the circle ${x^2} + {y^2} = 4{r^2}$ at only one point, if ${k^2}$=
Let $B$ be the centre of the circle $x^{2}+y^{2}-2 x+4 y+1=0$ Let the tangents at two points $\mathrm{P}$ and $\mathrm{Q}$ on the circle intersect at the point $\mathrm{A}(3,1)$. Then $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ is equal to .... .
The equations of the tangents to the circle ${x^2} + {y^2} = 13$ at the points whose abscissa is $2$, are