वृत्त ${x^2} + {y^2} + 16x - 24y + 183 = 0$ का दर्पण रेखा $4x + 7y + 13 = 0$ से प्रतिबिम्ब है
${x^2} + {y^2} + 32x - 4y + 235 = 0$
${x^2} + {y^2} + 32x + 4y - 235 = 0$
${x^2} + {y^2} + 32x - 4y - 235 = 0$
${x^2} + {y^2} + 32x + 4y + 235 = 0$
वृत्तों ${x^2} + {y^2} = 25$ तथा ${x^2} + {y^2} - 8x + 7 = 0$ के प्रतिच्छेद बिन्दु हैं
दो वृत्त ${x^2} + {y^2} + ax + by + c = 0$ व ${x^2} + {y^2} + dx + ey + f = 0$ परस्पर समकोण पर प्रतिच्छेद करेंगे यदि
यदि एक वृत्त $C$, जिसकी त्रिज्या 3 है, एक अन्य वृत्त $x^{2}+y^{2}+2 x-4 y-4=0$ को बाह्य रूप से बिंदु $(2,2)$ पर स्पर्श करता है, तो वृत्त $C$ द्वारा $x$-अक्ष पर काटे गए अंतःखंड की लंबाई है
वृत्त ${x^2} + {y^2} = {a^2}$ की जीवा $x\cos \alpha + y\sin \alpha = p$ को व्यास मानकर खींचे गये वृत्त का समीकरण है
वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$, वृत्त ${x^2} + {y^2} + 2g'x + 2f'y + c' = 0$ की परिधि को समद्विभाजित करेगा यदि