The equation of the image of the circle ${x^2} + {y^2} + 16x - 24y + 183 = 0$ by the line mirror $4x + 7y + 13 = 0$ is
${x^2} + {y^2} + 32x - 4y + 235 = 0$
${x^2} + {y^2} + 32x + 4y - 235 = 0$
${x^2} + {y^2} + 32x - 4y - 235 = 0$
${x^2} + {y^2} + 32x + 4y + 235 = 0$
The equation of the circle passing through the point $(-2, 4)$ and through the points of intersection of the circle ${x^2} + {y^2} - 2x - 6y + 6 = 0$ and the line $3x + 2y - 5 = 0$, is
The tangent to the circle $C_1 : x^2 + y^2 - 2x- 1\, = 0$ at the point $(2, 1)$ cuts off a chord of length $4$ from a circle $C_2$ whose centre is $(3, - 2)$. The radius of $C_2$ is
Suppose $S_1$ and $S_2$ are two unequal circles, $A B$ and $C D$ are the direct common tangents to these circles. A transverse common tangent $P Q$ cuts $A B$ in $R$ and $C D$ in $S$. If $A B=10$, then $R S$ is
A circle ${C_1}$ of radius $2$ touches both $x$ - axis and $y$ - axis. Another circle ${C_2}$ whose radius is greater than $2$ touches circle ${C_1}$ and both the axes. Then the radius of circle ${C_2}$ is
Locus of the points from which perpendicular tangent can be drawn to the circle ${x^2} + {y^2} = {a^2}$, is