वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$, वृत्त ${x^2} + {y^2} + 2g'x + 2f'y + c' = 0$ की परिधि को समद्विभाजित करेगा यदि

  • A

    $2g'(g - g') + 2f'(f - f') = c - c'$

  • B

    $g'(g - g') + f'(f - f') = c - c'$

  • C

    $f(g - g') + g(f - f') = c - c'$

  • D

    इनमें से कोई नहीं

Similar Questions

वृत्तों ${x^2} + {y^2} - 8x - 2y + 7 = 0$ व ${x^2} + {y^2} - 4x + 10y + 8 = 0$ के प्रतिच्छेद बिन्दुओं से गुजरने वाले एवं $y$ - अक्ष पर केन्द्र वाले वृत्त का समीकरण है

वृत्तों ${x^2} + {y^2} - 8x - 2y + 7 = 0$ व ${x^2} + {y^2} - 4x + 10y + 8 = 0$ के प्रतिच्छेद बिन्दुओं एवं  $(3, -3)$ से गुजरने वाले वृत्त का समीकरण है

अनुच्छेद में दी गई जानकारी के आधार पर सूचियों का उचित मिलान करके प्रश्न का उत्तर दें। माना कि वृत्त (circle) $C_1: x^2+y^2=9$ और वृत्त $C_2:(x-3)^2+(y-4)^2=16$ एक दूसरे को बिन्दुओं $X$ और $Y$ पर काटते हैं। माना लीजिये एक और वृत्त $C _3:( x - h )^2+( y - k )^2= r ^2$ निम्नलिखित शर्तों को संतुष्ट करता है :

$(i)$ $C _3$ का केंद्र (centre) $C _1$ और $C _2$ के केन्द्रों के सरेख (Collinear) है।

$(ii)$ $C _1$ और $C _2$ दोनों $C _3$ के अन्दर हैं और

$(iii)$ $C _3, C _1$ को $M$ और $C _2$ को $N$ पर स्पर्श करता है।

माना कि $X$ और $Y$ से होकर जाने वाली रेखा $C _3$ को $Z$ और $W$ पर काटती है तथा $C _1$ और $C _3$ की एक उभयनिष्ठ स्पर्श रेखा (Common tangent) परवलय $x ^2=8 \alpha y$ की स्पर्श रेखा है।

सूची-$I$($List-I$) में कुछ व्यंजक (expression) हैं जिनका मान नीचे दी गयी सूची-$II$($List-II$) में है

$List-I$ $List-II$
$(I)$ $2 h + k$ $(P)$ $6$
$(II)$  $ZW$ की लंबाई \ $XY$ की लंबाई  $(Q)$ $\sqrt{6}$
$(III)$  त्रिभुज $MZN$ का क्षेत्र फल $ZMW$ $(R)$ $\frac{5}{4}$
$(IV)$ $\alpha$ $(S)$ $\frac{21}{5}$
  $(T)$ $2 \sqrt{6}$
  $(U)$ $\frac{10}{3}$

($1$) निम्न में से कौन सा एकमात्र संयोजन गलत है ?

$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$

($2$) निम्न में से कौन सा एकमात्र संयोजन सही है ?

$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2019]

यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो                          

  • [AIEEE 2003]

एक वृत्त ${x^2} + {y^2} + 2gx + c = 0$ के समाक्षीय निकाय में, जहाँ $g$ एक प्राचल है, यदि $c > 0$, तब वृत्त हैं