उस दीर्घवृत्त का समीकरण जिसका एक शीर्ष $(0,7)$ तथा संगत नियता $y = 12$ है, होगा
$95{x^2} + 144{y^2} = 4655$
$144{x^2} + 95{y^2} = 4655$
$95{x^2} + 144{y^2} = 13680$
इनमें से कोई नहीं
दीर्घवृत्त $2{x^2} + 5{y^2} = 20$ के सापेक्ष बिन्दु $(4, -3)$ की स्थिति है
यदि दीर्घवृत्त $x^2+4 y^2=36$ के अंतर्गत, केन्द्र $(2,0)$ के सबसे बड़े वृत्त की त्रिज्या $\mathrm{r}$ है, तो $12 \mathrm{r}^2$ बराबर है -
किसी दीर्घवृत्त का केन्द्र $C$ एवं $PN$ कोई कोटि है, $A$, $A'$ दीर्घवृत्त के सिरे हैं तो $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ का मान होगा
माना कि $T_1$ एवं $T_2$ दीर्घवृत (ellipse) $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ एवं परवलय (parabola) $P: y^2=12 x$ की दो भिन्न उभयनिष्ठ स्पर्श रेखाएं (distinct common tangents) हैं। माना कि स्पर्श रेखा $T_1, P$ एवं $E$ को क्रमशः बिन्दुओं $A_1$ एवं $A_2$ पर स्पर्श करती है और स्पर्श रेखा $T_2, P$ एवं $E$ को क्रमशः बिन्दुओं $A_4$ एवं $A_3$ पर स्पर्श करती है। तब निम्न में से कौन सा(से) कथन सत्य है(हैं)?
$(A)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $35$ वर्ग इकाई है
$(B)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $36$ वर्ग इकाई है
$(C)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-3,0)$ पर मिलती हैं
$(D)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-6,0)$ पर मिलती हैं
एक दीर्घवृत्त के नाभिलम्ब की लम्बाई दीर्घ अक्ष की $\frac{1}{3}$ है, तो इसकी उत्केन्द्रता होगी