The equation of the circle through the points of intersection of ${x^2} + {y^2} - 1 = 0$, ${x^2} + {y^2} - 2x - 4y + 1 = 0$ and touching the line $x + 2y = 0$, is
${x^2} + {y^2} + x + 2y = 0$
${x^2} + {y^2} - x + 20 = 0$
${x^2} + {y^2} - x - 2y = 0$
$2({x^2} + {y^2}) - x - 2y = 0$
If the circle ${x^2} + {y^2} + 6x - 2y + k = 0$ bisects the circumference of the circle ${x^2} + {y^2} + 2x - 6y - 15 = 0,$ then $k =$
$P, Q$ and $R$ are the centres and ${r_1},\,\,{r_2},\,\,{r_3}$ are the radii respectively of three co-axial circles, then $QRr_1^2 + RP\,r_2^2 + PQr_3^2$ is equal to
Suppose $S_1$ and $S_2$ are two unequal circles, $A B$ and $C D$ are the direct common tangents to these circles. A transverse common tangent $P Q$ cuts $A B$ in $R$ and $C D$ in $S$. If $A B=10$, then $R S$ is
If a circle $C,$ whose radius is $3,$ touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point $(2, 2),$ then the length of the intercept cut by circle $c,$ on the $x-$ axis is equal to
The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$