સમબાજુ ત્રિકોણના આધારનું સમીકરણ $x + y = 2$ હોય અને શિરોબિંદુ $(2, -1)$ હોય તો ત્રિકોણની બાજુની લંબાઇ મેળવો.
$\sqrt {3/2} $
$\sqrt 2 $
$\sqrt {2/3} $
એકપણ નહી.
આપેલ $A(1, 1)$ અને કોઈ રેખા $AB$ એ $x-$ અક્ષને બિંદુ $B$ આગળ છેદે છે જો $AC$ એ $AB$ ને લંબ અને $y-$ અક્ષને બિંદુ $C$ માં સ્પર્શે તો $BC$ ના મધ્યબિંદુ $P$ નું બિંદુપથ સમીકરણ મેળવો
રેખાઓ $y-x = 0, x +y = 0$ અને $x-k= 0$ થી બનતા ત્રિકોણનું ક્ષેત્રફળ શોધો.
જો ત્રિકોણ $ABC$ માં $ A \equiv (1, 10) $, પરિકેન્દ્ર $\equiv$ $\left( { - \,\,{\textstyle{1 \over 3}}\,\,,\,\,{\textstyle{2 \over 3}}} \right)$ અને લંબકેન્દ્ર $\equiv$ $\left( {{\textstyle{{11} \over 3}}\,\,,\,\,{\textstyle{4 \over 3}}} \right)$ હોય તો બિંદુ $A$ ની સામેની બાજુના મધ્યબિંદુના યામો મેળવો
સમાંતરબાજુ ચતુષ્કોણની બે બાજુ રેખા $x + y = 3$ અને $x -y + 3 = 0$ પર આવેલ છે. જો સમાંતરબાજુ ચતુષ્કોણના વિકર્ણો બિંદુ $(2, 4)$ માં છેદે તો તેમાંથી એક શિરોબિંદુ ............... થાય
$2x - 3y = 4$ ને સમાંતર રેખા કે જે અક્ષો સાથે $12$ ચોરસ એકમ ક્ષેત્રફળનું ત્રિકોણ બનાવે તે રેખાનું સમીકરણ