રેખાઓ $y-x = 0, x +y = 0$ અને $x-k= 0$ થી બનતા ત્રિકોણનું ક્ષેત્રફળ શોધો.
The equation of the given lines are
$y-x=0 $.....$(1)$
$x+y=0$.....$(2)$
$x-k=0$.....$(3)$
The point of intersection of lines $(1)$ and $(2)$ is given by
$x=0$ and $y=0$
The point of intersection of lines $( 2 )$ and $( 3 )$ is given by
$x=k$ and $y=-k$
The point of intersection of lines $(3)$ and $(1)$ is given by
$x=k$ and $y=k$
Thus, the vertices of the triangle formed by the three given lines are $(0,0),( k ,- k ),$ and $( k , k )$
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),$ and $\left(x_{3}, y_{3}\right)$ is
$\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
Therefore, area of the triangle formed by the three given lines
$=\frac{1}{2}|0(-k-k)+k(k- 0)+k(0+k)|$square units
$=\frac{1}{2}\left|k^{2}+k^{2}\right|$square units
$=\frac{1}{2}\left|2 k^{2}\right|$ square umits
$=k^{2}$ square units
સાબિત કરો કે રેખાઓ$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ અને $x=0$ વડે રચાતા ત્રિકોણનું ક્ષેત્રફળ $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$ શોધો.
$(0, -1); (2, 1); (0, 3) $ અને $ (-2, 1)$ બિંદુઓ કોના શિરોબિંદુઓ છે ?
સં.બા.ચ $PQRS$ ના વિર્કણોના સમીકરણો $x + 3y = 4$ અને $6x - 2y = 7$ છે.તો $PQRS$ એ . . . . પ્રકારનો ચતુષ્કોણ થશેજ.
એક ત્રિકોણ $\mathrm{ABC}$ ની બે બાજુઓ $\mathrm{AB}$ અને $\mathrm{AC}$ નાં સમીકરણો અનુક્રમે $4 x+y=14$ અને $3 x-2 y=5$ છે. બિંદુ( $\left(2,-\frac{4}{3}\right)$ એ ત્રીજીબાજુ $BC$ નું $2:1$ નાં ગુણોત્તર માં આંતરવિભાજન કરે છે. બાજુ $BC$ નું સમીકરણ............. છે.
ધારો કે $A\ (2, -3)$ અને $B\ (-2, 1)$ ત્રિકોણ $ABC$ ના શિરોબિંદુઓ છે. જો આ ત્રિકોણનું ક્ષેત્રકેન્દ્ર (મધ્યકેન્દ્ર) $2x + 3y = 1$ રેખા પર ખસેડવામાં આવે તો શિરોબિંદુ $C$ નો બિંદુપથ કઈ રેખા હશે ?