वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण, जो $y = mx + c$  के समान्तर हो, है

  • A

    $y = mx \pm \sqrt {1 + {m^2}} $

  • B

    $y = mx \pm a\sqrt {1 + {m^2}} $

  • C

    $x = my \pm a\sqrt {1 + {m^2}} $

  • D

    इनमें से कोई नहीं

Similar Questions

माना $C$ एक वृत्त है जिसका केंद्र $(1,1)$ पर है तथा त्रिज्या $=1$ है। यदि $T$ केंद्र $(0, y)$ वाला वृत्त है जो मूल बिंदु से हो कर जाता है तथा वृत्त $C$ को बाह्य रूप से स्पर्श करता है, तो $T$ की त्रिज्या बराबर है:

  • [JEE MAIN 2014]

वृत्त ${x^2} + {y^2} = {a^2}$ की उस जीवा का समीकरण जिसके मध्य बिन्दु $({x_1},{y_1})$ है, होगा

  • [IIT 1983]

बिन्दु $(4, 5)$ से वृत्त ${x^2} + {y^2} + 2x - 6y = 6$ पर खींची स्पर्श रेखा की लम्बाई है

यदि रेखा $lx + my = 1$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा हो तो बिन्दु $(l, m)$ का बिन्दुपथ है

एक रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $P$ व $Q$ पर मिलती है। बिन्दु $P$ व $Q$ पर स्पर्श रेखायें खींची जाती हैं जो $R$ पर मिलती हैं, तो $R$ के निर्देशांक हैं