बिन्दु $(4, 5)$ से वृत्त ${x^2} + {y^2} + 2x - 6y = 6$ पर खींची स्पर्श रेखा की लम्बाई है
$\sqrt {13} $
$\sqrt {38} $
$2\sqrt 2 $
$2\sqrt {13} $
वृत्त ${x^2} + {y^2} + 4x - 4y + 4 = 0$ पर उस रेखा का समीकरण जो धनात्मक अक्षों से बराबर अन्त:खण्ड काटती है, होगा
सरल रेखा $x +2 y =1$ निर्देशांक अक्षों को $A$ तथा $B$ पर काटती है। मूल बिन्दु, $A$ तथा $B$ से होकर जाने वाला वृत्त खींचा गया है, तो मूल बिन्दु पर वृत्त की स्पर्श रेखा की $A$ तथा $B$ से लम्बवत् दूरियों का योग है
बिन्दु $(6, - 5)$ से वृत्त ${x^2} + {y^2} - 2x + 4y + 3 = 0$ पर खींची गयी स्पर्श रेखायुग्म का समीकरण है
निम्नलिखित कथनों पर विचार करो
कथन $(A)$ : वृत्त ${x^2} + {y^2} = 1$, $x$-अक्ष के समान्तर दो स्पर्श रेखाएँ रखता है
कारण $(R)$ : वृत्त के बिन्दु $(0, \pm 1)$ पर $\frac{{dy}}{{dx}} = 0$
तब निम्नलिखित में से कौनसा कथन सहीं है
माना कि बिन्दु $B$ रेखा $8 x -6 y -23=0$ के सापेक्ष बिन्दु $A (2,3)$ का प्रतिबिम्ब (reflection) है। माना कि $\Gamma_A$ और $\Gamma_{ B }$ क्रमश: त्रिज्याएँ $2$ और $1$ वाले वृत्त हैं, जिनके केन्द्र क्रमश: $A$ और $B$ हैं। माना कि वृत्तों $\Gamma_{ A }$ और $\Gamma_{ B }$ की एक ऐसी उभयनिष्ठ स्पर्श (common tangent) रेखा $T$ हैं, दोनों वृत्त जिसके एक ही तरफ हैं। यदि $C$, बिन्दुओं $A$ और $B$ से जाने वाली रेखा और $T$ का प्रतिच्छेद बिन्दु है, तब रेखाखण्ड (line segment) $AC$ की लम्बाई है . . . . .