समीकरण ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$, $\alpha $ के निम्न मान के लिए हल योग्य है
$ - \frac{1}{2} \le \alpha \le \frac{1}{2}$
$ - 3 \le \alpha \le 1$
$ - \frac{3}{2} \le \alpha \le \frac{1}{2}$
$ - 1 \le \alpha \le 1$
यदि ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, तो $\theta $ के व्यापक मान हैं
$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ को हल कीजिए
समीकरणों $\tan \theta = - 1$ तथा $\cos \theta = \frac{1}{{\sqrt 2 }}$ को सन्तुष्ट करने वाला $\theta $ का सर्वव्यापक मान है
यदि $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, तब $x = $ (जहाँ $k \in Z$)
$\cot \theta = \sin 2\theta $ (जहाँ $\theta \ne n\pi $ तथा $n$ एक पूर्णांक है), यदि $\theta = $