समीकरण $\sin x + \cos x = 2$ के हल होंगे

  • A

    एक हल

  • B

    दो हल

  • C

    अनन्त हल

  • D

    कोई हल नहीं

Similar Questions

यदि समीकरण $\cos p\theta  + \cos q\theta  = 0,\;p > 0,\;q > 0$ के लिए हल समान्तर श्रेणी में हों, तो अंकिक रूप से न्यूनतम सार्वान्तर होगा

निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए

$\cos ec\, x=-2$

माना $S =\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^2 \theta}+8^{2 \cos ^2 \theta}=16\right\}$ है। तो $n ( S )+\sum_{\theta \in S }\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$बराबर है :

  • [JEE MAIN 2022]

यदि $\cos \theta  + \cos 2\theta  + \cos 3\theta  = 0$, तब $\theta $ का व्यापक मान होगा

मानाकि $\theta, \phi \in[0,2 \pi]$ इस प्रकार है कि $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta) > 0$ और $-1 < \sin \theta<-\frac{\sqrt{3}}{2}$. तब $\phi$ निम्न में से किसको संतुष्ट नहीं कर सकता ?

$(A)$ $0<\phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2}<\phi<\frac{4 \pi}{3}$

$(C)$ $\frac{4 \pi}{3}<\phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2}<\phi<2 \pi$

  • [IIT 2012]