माना $S =\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^2 \theta}+8^{2 \cos ^2 \theta}=16\right\}$ है। तो $n ( S )+\sum_{\theta \in S }\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$बराबर है :

  • [JEE MAIN 2022]
  • A

    $0$

  • B

    $-2$

  • C

    $-4$

  • D

    $12$

Similar Questions

यदि $\cos 6\theta  + \cos 4\theta  + \cos 2\theta  + 1 = 0$, जहाँ  $0 < \theta  < {180^o}$, तो $\theta  =$

यदि $\frac{{\tan 3\theta  - 1}}{{\tan 3\theta  + 1}} = \sqrt 3 $, तो $\theta $ का व्यापक मान है

निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए

$\cos 4 x=\cos 2 x$

यदि समीकरण $\cos p\theta  + \cos q\theta  = 0,\;p > 0,\;q > 0$ के लिए हल समान्तर श्रेणी में हों, तो अंकिक रूप से न्यूनतम सार्वान्तर होगा

यदि $1 + \cot \theta  = {\rm{cosec}}\theta $, तो $\theta $ का व्यापक मान है