मानाकि $\theta, \phi \in[0,2 \pi]$ इस प्रकार है कि $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta) > 0$ और $-1 < \sin \theta<-\frac{\sqrt{3}}{2}$. तब $\phi$ निम्न में से किसको संतुष्ट नहीं कर सकता ?

$(A)$ $0<\phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2}<\phi<\frac{4 \pi}{3}$

$(C)$ $\frac{4 \pi}{3}<\phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2}<\phi<2 \pi$

  • [IIT 2012]
  • A

    $(A,B,C)$

  • B

    $(A,B,D)$

  • C

    $(A,C,D)$

  • D

    $(B,C,D)$

Similar Questions

यदि $\cos 2\theta  = (\sqrt 2  + 1)\,\,\left( {\cos \theta  - \frac{1}{{\sqrt 2 }}} \right)$, तो $\theta $ का व्यापक मान है

$[0,2 \pi]$ में $\alpha$ के उन मानों की संख्या, जिनके लिए $2 \sin ^{3} \alpha-7 \sin ^{2} \alpha+7 \sin \alpha=2$ है

  • [JEE MAIN 2014]

यदि $\cos \theta  =  - \frac{1}{{\sqrt 2 }}$ और $\tan \theta  = 1$, तो $\theta $ का सर्वव्यापक मान है

माना $f:[0,2] \rightarrow R$ एक फलन है जो

$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$

द्वारा परिभाषित है। यदि $\alpha, \beta \in[0,2]$ इस प्रकार है कि $\{ x \in[0,2]: f( x ) \geq 0\}=[\alpha, \beta]$ हो, तो $\beta-\alpha$ का मान होगा

  • [IIT 2020]

समीकरण $\tan x=-\frac{1}{\sqrt{3}}$ का मुख्य हल ज्ञात कीजिए